10.7 DIN EN ISO 898-1 | DIN EN 20898-2 Valores de resistencia de los tornillos / tuercas

Valores de resistencia de los tornillos

La identificación de la clase de resistencia a la tracción de los tornillos de acero estándar consta de dos figuras separadas por un punto:

- la primera figura, llamada índice de resistencia, es igual a $^{1}\!I_{100}$ de la resistencia a la tracción R_m en N/mm^2
- la segunda figura, conocida como relación del límite de elasticidad, es 10 veces la relación del límite de elasticidad $R_{\rm e}$ o el límite de elasticidad sustituto $R_{\rm p\,0.2}$ con la resistencia a la tracción $R_{\rm m}$. Si la resistencia a la tracción $R_{\rm m}$ se multiplica por $^{1}/_{10}$ de la segunda figura, el resultado es el límite de elasticidad $R_{\rm e}$

Ejemplo:

Tornillo de clase de resistencia 5.8, índice de resistencia = 5, relación del límite de elasticidad = 8.

Resistencia a la tracción $R_m =$ índice de resistencia x 100 = 5 N/mm 2 x 100 = 500 N/mm 2

Límite de elasticidad R_e = resistencia a la tracción $R_m \times 0.8 = 500 \text{ N/mm}^2 \times 0.8 = 400 \text{ N/mm}^2$

Características del material	Clase de resistencia a la tracción						
	4.6	5.6	5.8	6.8	8.8	10.9	12.9
Resistencia mínima a la tracción R _m en N/mm ²	400	500	500	600	800	1000	1200
Límite de elasticidad R_e en N/mm ²	240	300	400	480	640	900	1080
Elongación en rotura A en %	22	20	10	8	12	9	8

Si, en los elementos estándar, solo se ofrece una figura, por ejemplo, «clase de resistencia 5», se considerará que es el índice de resistencia y deberá tratarse como tal.

Valores de resistencia de las tuercas

La identificación de la clase de resistencia para las tuercas de acero estándar consta de una sola figura. Informa sobre la prueba de esfuerzo S_p en un mandril templado de pruebas y se expresa como la relación $^1\!/_{100}$ La prueba de esfuerzo S_p equivale, en principio, a la resistencia a la tracción R_m .

Ejemplo:

Tuerca de clase de resistencia 6

Resistencia a la tracción R_m = índice de resistencia x 100 = 6 N/mm² x 100 = 600 N/mm²

Prueba de esfuerzo S_p en N/mm ²	Clase de resistencia a la tracción						
para roscado	5	6	8	10	12		
M 4	520	600	800	1040	1150		
Superior M 4 M 7	580	670	855	1040	1150		
Superior M 7 M 10	590	680	870	1040	1160		
Superior M 10 M 16	610	700	880	1050	1190		
Superior M 16 M 39	630	720	920	1060	1200		

Tuercas y tornillos de la misma clase de resistencia, como tuerca 8 - tornillo 8.8, pueden someterse juntos a carga hasta el límite de elasticidad del tornillo sin causar daños a la tuerca.

