ELEMENTOS ANTIVIBRACIONES DE ALTAS PRESTACIONES

Información general

Los sistemas antivibraciones de elevadas prestaciones se usan respetando la normativa de seguridad en materia de vibraciones y ruido (DL 81/2008). El uso de estos sistemas permite prevenir daños en las estructuras, evita que se vea afectado el correcto funcionamiento de máquinas sensibles y reduce la generación de ruido.

Características

AVC:

- Elevada deflexión estática, baja frecuencia de resonancia y alto aislamiento de las vibraciones.
- Elevado factor de amortiguación, apropiado también para máquinas con desequilibrios.
- Adecuado para el uso en compresión, tracción y cizallamiento.
- Ideales para aplicaciones en que sean posibles golpes y descargas.
- Estructura elaborada completamente en acero INOX, con la consiguiente resistencia al fuego, a las altas temperaturas y a la corrosión.

AVM.

- Elevada deflexión estática dependiendo de la altura, baja frecuencia de resonancia y alto aislamiento de las vibraciones.
- No tienen factor de amortiguación, por lo que no son apropiados para máquinas con desequilibrios.
- Se puede usar con compresión.
- Con temperaturas inferiores a -5°C es necesario usar muelle de acero INOX (modelo especial previa solicitud).

AVF:

- Cargas elevadas de dimensiones reducidas.
- Se caracterizan por una rigidez no lineal: en el primer tramo de la curva, se tiene un aislamiento de las vibraciones; en el siguiente tramo, se tiene una estabilización del sistema por posibles sobrecargas.
- Estructura elaborada completamente en acero INOX, con la consiguiente resistencia al fuego, a las altas temperaturas y a la corrosión.
- Se puede usar con compresión.

AVG:

- Buena deflexión estática, baja frecuencia de resonancia y alto aislamiento de las vibraciones.
- Elevado factor de amortiguación, apropiado también para máquinas con desequilibrios.
- Se puede usar con compresión y tracción.
- Alto grado de seguridad: incluso en caso de combustión de los amortiguadores de goma, el perno interior no se sale de la estructura y mantiene seguro el aparato suspendido.

Criterios de elección

Análisis de las pruebas estáticas para la elección del elemento antivibraciones adecuado.

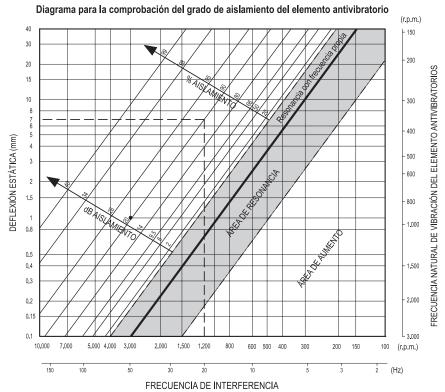
Informaciones básicas requeridas:

- · Carga estática aplicada en cada elemento antivibraciones (ejercida sobre cada uno de los puntos de apoyo).
- Frecuencia perturbadora que debe reducirse y porcentaje de aislamiento deseado.

Cómo elegir el elemento antivibración:

- En cuanto al diagrama para comprobar el grado de aislamiento, debe determinarse la correspondiente deflexión estática necesaria para obtener el aislamiento deseado.
- Seleccione el producto que presente la deflexión estática necesaria ante la fuerza que se ejerza.

Ejemplo:


Debe considerarse una aplicación con las siguientes características:

- Carga estática sobre cada soporte: 1 400 N
- Frecuencia para aislar: 1.200 rpm = 20 Hz
- Aislamiento necesario: 90% a 20 Hz

Mediante el siguiente diagrama para la comprobación del grado de aislamiento, referido a los elementos antivibraciones que carecen de amortiguación, por ejemplo, AVM (en caso de amortiguación, el porcentaje de aislamiento podría variar, se aconseja contactar con el servicio técnico de Elesa+Ganter), se comprueba que es necesaria una deflexión estática de al menos 7 mm para obtener un aislamiento del 90% de la frecuencia de 20 Hz.

ELEMENTOS ANTIVIBRACIONES DE ALTAS PRESTACIONES

En cuanto al gráfico que figura abajo, los productos con intersección con la línea de los 1 400 N son: AVF, AVG, AVM.

Ejemplo de diagramas de carga

Ante una carga de 1 400 N, las deflexiones estáticas previstas son:

- AVF: aprox. 4 mm (< 7 mm) = aislamiento de aprox. 80 % a 20 Hz
- AVG: aprox. 6,5 mm (< 7 mm) = aislamiento de aprox. 88% a 20 Hz
- AVM: 13 mm (> 7 mm) = aislamiento de aprox. 95% a 20 Hz

El producto que muestra mejor aislamiento y, por lo tanto, el más idóneo es el AVM.

12

16

n

3

5 6

20

[mm]

ELEMENTOS ANTIVIBRACIONES DE ALTAS PRESTACIONES

Diagrama simplificado para comprobar el grado de aislamiento de un amortiguador de vibraciones.

Defl.	fOv	0/ : 1 : 1															
[mm]	[Hz]	% aislamiento															
1	15.9	-1%	-5%	-11%	-21%	-38%	-65%	-116%	-235%	-795%	-935%	-73%	32%	70%	89%	94%	96%
1.5	13.0	-2%	-7%	-17%	-36%	-70%	-145%	-416%	-1795%	-201%	-55%	27%	63%	82%	93%	96%	98%
2	11.3	-2%	-10%	-25%	-54%	-121%	-375%	-1239%	-148%	-29%	16%	54%	75%	87%	95%	97%	98%
2.5	10.1	-3%	-12%	-33%	-78%	-218%	-7569%	-191%	-33%	18%	43%	66%	81%	90%	96%	98%	99%
3	9.2	-3%	-15%	-42%	-111%	-463%	-442%	-63%	10%	40%	56%	73%	84%	92%	97%	98%	99%
4	8.0	-5%	-21%	-65%	-235%	-935%	-73%	13%	45%	61%	70%	81%	89%	94%	97%	99%	99%
5	7.1	-6%	-28%	-97%	-715%	-170%	-3%	41%	60%	71%	78%	85%	91%	95%	98%	99%	99%
6	6.5	-7%	-36%	-145%	-1795%	-55%	27%	55%	69%	77%	82%	88%	93%	96%	98%	99%	99%
7	6.0	-8%	-44%	-223%	-338%	-9%	43%	64%	74%	81%	85%	90%	94%	97%	99%	99%	99%
8	5.6	-10%	-54%	-375%	-148%	16%	54%	70%	78%	84%	87%	91%	95%	97%	99%	99%	Máx.
10	5.0	-12%	-78%	-7569%	-33%	43%	66%	77%	83%	87%	90%	93%	96%	98%	99%	99%	Máx.
12	4.6	-15%	-111%	-442%	10%	56%	73%	82%	87%	90%	92%	94%	97%	98%	99%	Máx.	Máx.
14	4.3	-18%	-159%	-162%	31%	65%	78%	85%	89%	91%	93%	95%	97%	98%	99%	Máx.	Máx.
16	4.0	-21%	-235%	-73%	45%	70%	81%	87%	90%	92%	94%	96%	97%	99%	99%	Máx.	Máx.
18	3.8	-25%	-375%	-29%	54%	75%	84%	88%	91%	93%	95%	96%	98%	99%	99%	Máx.	Máx.
20	3.6	-28%	-715%	-3%	60%	78%	85%	90%	92%	94%	95%	97%	98%	99%	99%	Máx.	Máx.
22	3.4	-32%	-2759%	15%	65%	80%	87%	91%	93%	95%	96%	97%	98%	99%	Máx.	Máx.	Máx.
25	3.2	-38%	-935%	32%	70%	83%	89%	92%	94%	95%	96%	97%	98%	99%	Máx.	Máx.	Máx.
30	2.9	-49%	-217%	49%	77%	86%	91%	93%	95%	96%	97%	98%	99%	99%	Máx.	Máx.	Máx.
32	2.8	-54%	-148%	54%	78%	87%	91%	94%	95%	96%	97%	98%	99%	99%	Máx.	Máx.	Máx.
35	2.7	-62%	-87%	59%	81%	88%	92%	94%	96%	97%	97%	98%	99%	99%	Máx.	Máx.	Máx.
40	2.5	-78%	-33%	66%	83%	90%	93%	95%	96%	97%	98%	98%	99%	99%	Máx.	Máx.	Máx.
45	2.4	-97%	-3%	71%	85%	91%	94%	96%	97%	97%	98%	99%	99%	99%	Máx.	Máx.	Máx.
50	2.3	-121%	16%	75%	87%	92%	95%	96%	97%	98%	98%	99%	99%	Máx.	Máx.	Máx.	Máx.
55	2.1	-152%	29%	77%	88%	93%	95%	96%	97%	98%	98%	99%	99%	Máx.	Máx.	Máx.	Máx.
60	2.1	-192%	39%	80%	90%	94%	96%	97%	98%	98%	98%	99%	99%	Máx.	Máx.	Máx.	Máx.
70	1.9	-330%	52%	83%	91%	95%	96%	97%	98%	98%	99%	99%	99%	Máx.	Máx.	Máx.	Máx.
80	1.8	-715%	60%	85%	92%	95%	97%	98%	98%	99%	99%	99%	99%	Máx.	Máx.	Máx.	Máx.
90	1.7	-7569%	66%	87%	93%	96%	97%	98%	98%	99%	99%	99%	Máx.	Máx.	Máx.	Máx.	Máx.
100	1.6	-935%	70%	89%	94%	96%	97%	98%	99%	99%	99%	99%	Máx.	Máx.	Máx.	Máx.	Máx.
150	1.3	-55%	82%	93%	96%	98%	98%	99%	99%	99%	99%	Máx.	Máx.	Máx.	Máx.	Máx.	Máx.
200	1.1	16%	87%	95%	97%	98%	99%	99%	99%	99%	Máx.	Máx.	Máx.	Máx.	Máx.	Máx.	Máx.
RP	RPM		200	300	400	500	600	700	800	900	1000	1200	1500	2000	3000	4000	5000
[Hz]		1.7	3.3	5.0	6.7	8.3	10.0	11.7	13.3	15.0	16.7	20.0	25.0	33.3	50.0	66.7	83.3

Aislamiento nulo

Resonancia

Aislamiento mínimo

Aislamiento moderado

Aislamiento medio

Aislamiento elevado